Hardware that is based on parallel computing architecture has recently been gaining increasing popularity in high performance computing.
The efficiency of parallel processing hardware in engineering problem solving such as the computer simulation of physical processes is not directly dependent on the number of processors: four CPU cores do not in fact provide a fourfold speed increase in solving complex engineering problems over one CPU core. Similarly, the transfer of computation to graphics cards with hundreds of cores cannot provide a hundredfold increase in speed.
First of all, parallel computation acceleration is limited by computational algorithms; running algorithms with a low degree of parallelization on supercomputers and high-performance workstations is irrational. The notion of "efficiency of parallelization" is explained by Amdahl's law, according to which if at least 1/10 of the program is executed sequentially, then the acceleration cannot be increased beyond 10 times the original speed regardless the number of cores employed.
Telling examples of the limited effectiveness of algorithm parallelization for solving engineering problems are provided in the relatively weak results of worldwide leaders in computer-aided engineering (CAE) software - Abaqus and Ansys.