Simulation of Groundwater Flow in Saturated Ground

Applicability in construction engineering

Ground water flow rates predefine largely predetermine the construction methods and materials used for footings, basement walls, underground constructions and many other in-ground works. The stability of beds and banks of water reservoirs and channels also depends on the filtration in coastal terrain. Factoring the flow of ground water improves the modeling accuracy of othe rphysical processes in the ground. When distribution of thermal fields takes place in the ground, the convective heat transfer is caused by groundwater flow.

Water is able to flow through the ground because of the presence of pores, which are voids of various diameters and shapes that appear due to the fact that structural elements produced during terrain formation don’t fit flush with each other. The approach for modeling water flow processes differ according to the degree of water porosity and the velocity of water in pores: if the pores are in a saturated condition, the groundwater flow process is simulated based on the Darcy differential equation; water flow in unsaturated ground is described by Richard’s or Brinkman’s equation.

Continue reading